spring使用rabbitmq高级特性
消息丢失的情况
首先,我们一起分析一下消息丢失的可能性有哪些。 消息从发送者发送消息,到消费者处理消息,需要经过的流程是这样的:
消息从生产者到消费者的每一步都可能导致消息丢失:
- 发送消息时丢失:
- 生产者发送消息时连接MQ失败
- 生产者发送消息到达MQ后未找到Exchange
- 生产者发送消息到达MQ的Exchange后,未找到合适的Queue
- 消息到达MQ后,处理消息的进程发生异常
- MQ导致消息丢失:
- 消息到达MQ,保存到队列后,尚未消费就突然宕机
- 消费者处理消息时:
- 消息接收后尚未处理突然宕机
- 消息接收后处理过程中抛出异常
综上,我们要解决消息丢失问题,保证MQ的可靠性,就必须从3个方面入手:
- 确保生产者一定把消息发送到MQ
- 确保MQ不会将消息弄丢
- 确保消费者一定要处理消息
1.发送者的可靠性
1.1生产者重试机制
首先第一种情况,就是生产者发送消息时,出现了网络故障,导致与MQ的连接中断。
为了解决这个问题,SpringAMQP提供的消息发送时的重试机制。即:当RabbitTemplate与MQ连接超时后,多次重试。
修改publisher模块的application.yaml文件,添加下面的内容:
spring:
rabbitmq:
connection-timeout: 1s # 设置MQ的连接超时时间
template:
retry:
enabled: true # 开启超时重试机制
initial-interval: 1000ms # 失败后的初始等待时间
multiplier: 1 # 失败后下次的等待时长倍数,下次等待时长 = initial-interval * multiplier
max-attempts: 3 # 最大重试次数
注意:当网络不稳定的时候,利用重试机制可以有效提高消息发送的成功率。不过SpringAMQP提供的重试机制是阻塞式的重试,也就是说多次重试等待的过程中,当前线程是被阻塞的。 如果对于业务性能有要求,建议禁用重试机制。如果一定要使用,请合理配置等待时长和重试次数,当然也可以考虑使用异步线程来执行发送消息的代码。
1.2.生产者确认机制
一般情况下,只要生产者与MQ之间的网路连接顺畅,基本不会出现发送消息丢失的情况,因此大多数情况下我们无需考虑这种问题。 不过,在少数情况下,也会出现消息发送到MQ之后丢失的现象,比如:
- MQ内部处理消息的进程发生了异常
- 生产者发送消息到达MQ后未找到Exchange
- 生产者发送消息到达MQ的Exchange后,未找到合适的Queue,因此无法路由
针对上述情况,RabbitMQ提供了生产者消息确认机制,包括Publisher Confirm和Publisher Return两种。在开启确认机制的情况下,当生产者发送消息给MQ后,MQ会根据消息处理的情况返回不同的回执。
总结如下:
- 当消息投递到MQ,但是路由失败时,通过Publisher Return返回异常信息,同时返回ack的确认信息,代表投递成功
- 临时消息投递到了MQ,并且入队成功,返回ACK,告知投递成功
- 持久消息投递到了MQ,并且入队完成持久化,返回ACK ,告知投递成功
- 其它情况都会返回NACK,告知投递失败
其中ack和nack属于Publisher Confirm机制,ack是投递成功;nack是投递失败。而return则属于Publisher Return机制。 默认两种机制都是关闭状态,需要通过配置文件来开启。
1.3.实现生产者确认
1.3.1.开启生产者确认
在publisher模块的application.yaml中添加配置:
spring:
rabbitmq:
publisher-confirm-type: correlated # 开启publisher confirm机制,并设置confirm类型
publisher-returns: true # 开启publisher return机制
这里publisher-confirm-type有三种模式可选:
- none:关闭confirm机制
- simple:同步阻塞等待MQ的回执
- correlated:MQ异步回调返回回执
一般我们推荐使用correlated,回调机制。
1.3.2.定义ReturnCallback
每个RabbitTemplate只能配置一个ReturnCallback,因此我们可以在配置类中统一设置。我们在publisher模块定义一个配置类:
@Slf4j
@AllArgsConstructor
@Configuration
public class MqConfig {
private final RabbitTemplate rabbitTemplate;
@PostConstruct
public void init(){
rabbitTemplate.setReturnsCallback(new RabbitTemplate.ReturnsCallback() {
@Override
public void returnedMessage(ReturnedMessage returned) {
log.error("触发return callback,");
log.debug("exchange: {}", returned.getExchange());
log.debug("routingKey: {}", returned.getRoutingKey());
log.debug("message: {}", returned.getMessage());
log.debug("replyCode: {}", returned.getReplyCode());
log.debug("replyText: {}", returned.getReplyText());
}
});
}
}
1.3.3.定义ConfirmCallback 由于每个消息发送时的处理逻辑不一定相同,因此ConfirmCallback需要在每次发消息时定义。具体来说,是在调用RabbitTemplate中的convertAndSend方法时,多传递一个参数:
这里的CorrelationData中包含两个核心的东西:
- id:消息的唯一标示,MQ对不同的消息的回执以此做判断,避免混淆
- SettableListenableFuture:回执结果的Future对象
将来MQ的回执就会通过这个Future来返回,我们可以提前给CorrelationData中的Future添加回调函数来处理消息回执:
我们新建一个测试,向系统自带的交换机发送消息,并且添加ConfirmCallback:
@Test
void testPublisherConfirm() {
// 1.创建CorrelationData
CorrelationData cd = new CorrelationData();
// 2.给Future添加ConfirmCallback
cd.getFuture().addCallback(new ListenableFutureCallback<CorrelationData.Confirm>() {
@Override
public void onFailure(Throwable ex) {
// 2.1.Future发生异常时的处理逻辑,基本不会触发
log.error("send message fail", ex);
}
@Override
public void onSuccess(CorrelationData.Confirm result) {
// 2.2.Future接收到回执的处理逻辑,参数中的result就是回执内容
if(result.isAck()){ // result.isAck(),boolean类型,true代表ack回执,false 代表 nack回执
log.debug("发送消息成功,收到 ack!");
}else{ // result.getReason(),String类型,返回nack时的异常描述
log.error("发送消息失败,收到 nack, reason : {}", result.getReason());
}
}
});
// 3.发送消息
rabbitTemplate.convertAndSend("hmall.direct", "q", "hello", cd);
}
注意: 开启生产者确认比较消耗MQ性能,一般不建议开启。而且大家思考一下触发确认的几种情况:
- 路由失败:一般是因为RoutingKey错误导致,往往是编程导致
- 交换机名称错误:同样是编程错误导致
- MQ内部故障:这种需要处理,但概率往往较低。因此只有对消息可靠性要求非常高的业务才需要开启,而且仅仅需要开启ConfirmCallback处理nack就可以了。
2.MQ的可靠性
消息到达MQ以后,如果MQ不能及时保存,也会导致消息丢失,所以MQ的可靠性也非常重要。
2.1.数据持久化
为了提升性能,默认情况下MQ的数据都是在内存存储的临时数据,重启后就会消失。为了保证数据的可靠性,必须配置数据持久化,包括:
- 交换机持久化
- 队列持久化
- 消息持久化
2.1.1.交换机持久化
在控制台的Exchanges页面,添加交换机时可以配置交换机的Durability参数:
设置为 Durable
就是持久化模式,Transient
就是临时模式。
2.1.2.队列持久化
在控制台的Queues页面,添加队列时,同样可以配置队列的 Durability
参数:
2.1.3.消息持久化
在控制台发送消息的时候,可以添加很多参数,而消息的持久化是要配置一个 properties
:
** **说明:在开启持久化机制以后,如果同时还开启了生产者确认,那么MQ会在消息持久化以后才发送ACK回执,进一步确保消息的可靠性。
不过出于性能考虑,为了减少IO次数,发送到MQ的消息并不是逐条持久化到数据库的,而是每隔一段时间批量持久化。一般间隔在100毫秒左右,这就会导致ACK有一定的延迟,因此建议生产者确认全部采用异步方式。
2.2.LazyQueue
在默认情况下,RabbitMQ会将接收到的信息保存在内存中以降低消息收发的延迟。但在某些特殊情况下,这会导致消息积压,比如:
- 消费者宕机或出现网络故障
- 消息发送量激增,超过了消费者处理速度
- 消费者处理业务发生阻塞
一旦出现消息堆积问题,RabbitMQ的内存占用就会越来越高,直到触发内存预警上限。此时RabbitMQ会将内存消息刷到磁盘上,这个行为成为 PageOut
. PageOut
会耗费一段时间,并且会阻塞队列进程。因此在这个过程中RabbitMQ不会再处理新的消息,生产者的所有请求都会被阻塞。
为了解决这个问题,从RabbitMQ的3.6.0版本开始,就增加了Lazy Queues的模式,也就是惰性队列。惰性队列的特征如下:
- 接收到消息后直接存入磁盘而非内存
- 消费者要消费消息时才会从磁盘中读取并加载到内存(也就是懒加载)
- 支持数百万条的消息存储
而在3.12版本之后,LazyQueue已经成为所有队列的默认格式。因此官方推荐升级MQ为3.12版本或者所有队列都设置为LazyQueue模式。
2.2.1.控制台配置Lazy模式
在添加队列的时候,添加 x-queue-mod=lazy
参数即可设置队列为Lazy模式:
2.2.2.代码配置Lazy模式
在利用SpringAMQP声明队列的时候,添加 x-queue-mod=lazy
参数也可设置队列为Lazy模式:
@Bean
public Queue lazyQueue(){
return QueueBuilder
.durable("lazy.queue")
.lazy() // 开启Lazy模式
.build();
}
这里是通过 QueueBuilder
的 lazy()
函数配置Lazy模式,底层源码如下:
基于注解来声明队列并设置为Lazy模式:
@RabbitListener(queuesToDeclare = @Queue(
name = "lazy.queue",
durable = "true",
arguments = @Argument(name = "x-queue-mode", value = "lazy")
))
public void listenLazyQueue(String msg){
log.info("接收到 lazy.queue的消息:{}", msg);
}
2.2.3.更新已有队列为lazy模式
对于已经存在的队列,也可以配置为lazy模式,但是要通过设置policy实现。
可以基于命令行设置policy:
rabbitmqctl set_policy Lazy "^lazy-queue$" '{"queue-mode":"lazy"}' --apply-to queues
命令解读:
rabbitmqctl
:RabbitMQ的命令行工具set_policy
:添加一个策略Lazy
:策略名称,可以自定义"^lazy-queue$"
:用正则表达式匹配队列的名字'{"queue-mode":"lazy"}'
:设置队列模式为lazy模式--apply-to queues
:策略的作用对象,是所有的队列
当然,也可以在控制台配置policy,进入在控制台的 Admin
页面,点击 Policies
,即可添加配置:
3.消费者的可靠性
当RabbitMQ向消费者投递消息以后,需要知道消费者的处理状态如何。因为消息投递给消费者并不代表就一定被正确消费了,可能出现的故障有很多,比如:
- 消息投递的过程中出现了网络故障
- 消费者接收到消息后突然宕机
- 消费者接收到消息后,因处理不当导致异常
- ...
一旦发生上述情况,消息也会丢失。因此,RabbitMQ必须知道消费者的处理状态,一旦消息处理失败才能重新投递消息。
但问题来了:RabbitMQ如何得知消费者的处理状态呢?
本章我们就一起研究一下消费者处理消息时的可靠性解决方案。
2.1.消费者确认机制
**为了确认消费者是否成功处理消息,RabbitMQ提供了消费者确认机制(**Consumer Acknowledgement)。即:当消费者处理消息结束后,应该向RabbitMQ发送一个回执,告知RabbitMQ自己消息处理状态。回执有三种可选值:
- ack:成功处理消息,RabbitMQ从队列中删除该消息
- nack:消息处理失败,RabbitMQ需要再次投递消息
- reject:消息处理失败并拒绝该消息,RabbitMQ从队列中删除该消息
一般reject方式用的较少,除非是消息格式有问题,那就是开发问题了。因此大多数情况下我们需要将消息处理的代码通过 try catch
机制捕获,消息处理成功时返回ack,处理失败时返回nack.
由于消息回执的处理代码比较统一,因此SpringAMQP帮我们实现了消息确认。并允许我们通过配置文件设置ACK处理方式,有三种模式:
none
:不处理。即消息投递给消费者后立刻ack,消息会立刻从MQ删除。非常不安全,不建议使用manual
:手动模式。需要自己在业务代码中调用api,发送ack
或reject
,存在业务入侵,但更灵活auto
:自动模式。SpringAMQP利用AOP对我们的消息处理逻辑做了环绕增强,当业务正常执行时则自动返回ack
. 当业务出现异常时,根据异常判断返回不同结果:- 如果是****业务异常,会自动返回
nack
; - 如果是****消息处理或校验异常,自动返回
reject
;
- 如果是****业务异常,会自动返回
返回Reject的常见异常有:
Starting with version 1.3.2, the default ErrorHandler is now a ConditionalRejectingErrorHandler that rejects (and does not requeue) messages that fail with an irrecoverable error. Specifically, it rejects messages that fail with the following errors:
- o.s.amqp…MessageConversionException: Can be thrown when converting the incoming message payload using a MessageConverter.
- o.s.messaging…MessageConversionException: Can be thrown by the conversion service if additional conversion is required when mapping to a @RabbitListener method.
- o.s.messaging…MethodArgumentNotValidException: Can be thrown if validation (for example, @Valid) is used in the listener and the validation fails.
- o.s.messaging…MethodArgumentTypeMismatchException: Can be thrown if the inbound message was converted to a type that is not correct for the target method. For example, the parameter is declared as Message
** but Message** ** is received.** - java.lang.NoSuchMethodException: Added in version 1.6.3.
- java.lang.ClassCastException: Added in version 1.6.3.
通过下面的配置可以修改SpringAMQP的ACK处理方式:
spring:
rabbitmq:
listener:
simple:
acknowledge-mode: none # 不做处理
修改consumer服务的SpringRabbitListener类中的方法,模拟一个消息处理的异常:
@RabbitListener(queues = "simple.queue")
public void listenSimpleQueueMessage(String msg) throws InterruptedException {
log.info("spring 消费者接收到消息:【" + msg + "】");
if (true) {
throw new MessageConversionException("故意的");
}
log.info("消息处理完成");
}
测试可以发现:当消息处理发生异常时,消息依然被RabbitMQ删除了。
我们再次把确认机制修改为auto:
spring:
rabbitmq:
listener:
simple:
acknowledge-mode: auto # 自动ack
在异常位置打断点,再次发送消息,程序卡在断点时,可以发现此时消息状态为 unacked
(未确定状态):
放行以后,由于抛出的是****消息转换异常,因此Spring会自动返回 reject
,所以消息依然会被删除:
将异常改为RuntimeException类型:
@RabbitListener(queues = "simple.queue")
public void listenSimpleQueueMessage(String msg) throws InterruptedException {
log.info("spring 消费者接收到消息:【" + msg + "】");
if (true) {
throw new RuntimeException("故意的");
}
log.info("消息处理完成");
}
在异常位置打断点,然后再次发送消息测试,程序卡在断点时,可以发现此时消息状态为 unacked
(未确定状态):
放行以后,由于抛出的是业务异常,所以Spring返回 ack
,最终消息恢复至 Ready
状态,并且没有被RabbitMQ删除:
当我们把配置改为 auto
时,消息处理失败后,会回到RabbitMQ,并重新投递到消费者。
2.2.失败重试机制
当消费者出现异常后,消息会不断requeue(重入队)到队列,再重新发送给消费者。如果消费者再次执行依然出错,消息会再次requeue到队列,再次投递,直到消息处理成功为止。
极端情况就是消费者一直无法执行成功,那么消息requeue就会无限循环,导致mq的消息处理飙升,带来不必要的压力:
当然,上述极端情况发生的概率还是非常低的,不过不怕一万就怕万一。为了应对上述情况Spring又提供了消费者失败重试机制:在消费者出现异常时利用本地重试,而不是无限制的requeue到mq队列。
spring:
rabbitmq:
listener:
simple:
retry:
enabled: true # 开启消费者失败重试
initial-interval: 1000ms # 初识的失败等待时长为1秒
multiplier: 1 # 失败的等待时长倍数,下次等待时长 = multiplier * last-interval
max-attempts: 3 # 最大重试次数
stateless: true # true无状态;false有状态。如果业务中包含事务,这里改为false
重启consumer服务,重复之前的测试。可以发现:
- 消费者在失败后消息没有重新回到MQ无限重新投递,而是在本地重试了3次
- 本地重试3次以后,抛出了
AmqpRejectAndDontRequeueException
异常。查看RabbitMQ控制台,发现消息被删除了,说明最后SpringAMQP返回的是reject
结论:
- 开启本地重试时,消息处理过程中抛出异常,不会requeue到队列,而是在消费者本地重试
- 重试达到最大次数后,Spring会返回reject,消息会被丢弃
2.3.失败处理策略
在之前的测试中,本地测试达到最大重试次数后,消息会被丢弃。这在某些对于消息可靠性要求较高的业务场景下,显然不太合适了。
因此Spring允许我们自定义重试次数耗尽后的消息处理策略,这个策略是由 MessageRecovery
接口来定义的,它有3个不同实现:
- ** **
RejectAndDontRequeueRecoverer
:重试耗尽后,直接reject
,丢弃消息。默认就是这种方式 - ** **
ImmediateRequeueMessageRecoverer
:重试耗尽后,返回nack
,消息重新入队 - ** **
RepublishMessageRecoverer
:重试耗尽后,将失败消息投递到指定的交换机
比较优雅的一种处理方案是 RepublishMessageRecoverer
,失败后将消息投递到一个指定的,专门存放异常消息的队列,后续由人工集中处理。
1)在consumer服务中定义处理失败消息的交换机和队列
@Bean
public DirectExchange errorMessageExchange(){
return new DirectExchange("error.direct");
}
@Bean
public Queue errorQueue(){
return new Queue("error.queue", true);
}
@Bean
public Binding errorBinding(Queue errorQueue, DirectExchange errorMessageExchange){
return BindingBuilder.bind(errorQueue).to(errorMessageExchange).with("error");
}
2)定义一个RepublishMessageRecoverer,关联队列和交换机
@Bean
public MessageRecoverer republishMessageRecoverer(RabbitTemplate rabbitTemplate){
return new RepublishMessageRecoverer(rabbitTemplate, "error.direct", "error");
}
完整代码如下:
import org.springframework.amqp.core.Binding;
import org.springframework.amqp.core.BindingBuilder;
import org.springframework.amqp.core.DirectExchange;
import org.springframework.amqp.core.Queue;
import org.springframework.amqp.rabbit.core.RabbitTemplate;
import org.springframework.amqp.rabbit.retry.MessageRecoverer;
import org.springframework.amqp.rabbit.retry.RepublishMessageRecoverer;
import org.springframework.context.annotation.Bean;
@Configuration
@ConditionalOnProperty(name = "spring.rabbitmq.listener.simple.retry.enabled", havingValue = "true")
public class ErrorMessageConfig {
@Bean
public DirectExchange errorMessageExchange(){
return new DirectExchange("error.direct");
}
@Bean
public Queue errorQueue(){
return new Queue("error.queue", true);
}
@Bean
public Binding errorBinding(Queue errorQueue, DirectExchange errorMessageExchange){
return BindingBuilder.bind(errorQueue).to(errorMessageExchange).with("error");
}
@Bean
public MessageRecoverer republishMessageRecoverer(RabbitTemplate rabbitTemplate){
return new RepublishMessageRecoverer(rabbitTemplate, "error.direct", "error");
}
}